E46 BMW Social Directory E46 FAQ 3-Series Discussion Forums BMW Photo Gallery BMW 3-Series Technical Information E46 Fanatics - The Ultimate BMW Resource BMW Vendors General E46 Forum The Tire Rack's Tire Wheel Forum Forced Induction Forum The Off-Topic The E46 BMW Showroom For Sale, For Trade or Wanting to Buy

Welcome to the E46Fanatics forums. E46Fanatics is the premiere website for BMW 3 series owners around the world with interactive forums, a geographical enthusiast directory, photo galleries, and technical information for BMW enthusiasts.

You are currently viewing our boards as a guest which gives you limited access to view most discussions and access our other features. By joining our free community you will have access to post topics, communicate privately with other members (PM), respond to polls, upload content and access many other special features. Registration is fast, simple and absolutely free so please, join our community today!

If you have any problems with the registration process or your account login, please contact contact us.

Go Back   E46Fanatics > E46 BMW > The Showroom

The Showroom
This is the place to show off your BMW to other members of the community. Post pictures and videos of your car and the modifications you have done to it. If you need a picture of something on a coupe, sedan, convertible or touring you will probably find it here!

Reply
 
Thread Tools Search this Thread Rating: Thread Rating: 17 votes, 5.00 average. Display Modes
Old 11-27-2015, 08:41 PM   #21
Logan175
Registered User
 
Join Date: Mar 2012
Location: Winnipeg,MB
Posts: 53
My Ride: E46 320i
Very cool thank you!
Logan175 is offline   Reply With Quote
Old 11-28-2015, 02:09 AM   #22
KCPBMW
Registered User
 
Join Date: Dec 2013
Location: USA
Posts: 170
My Ride: 325Xi W/Rob43 Susp.
Great work, I love it
KCPBMW is offline   Reply With Quote
Old 12-09-2015, 04:58 AM   #23
Razz617
Registered User
 
Join Date: May 2013
Location: Boston, Massachusetts
Posts: 171
My Ride: 2004 330Ci
Great post! Subscribed.
Razz617 is offline   Reply With Quote
Old 12-10-2015, 11:34 PM   #24
Knight
Registered User
 
Join Date: Jan 2008
Location: NNJ
Posts: 3,364
My Ride: '05 330Ci | '01 325i
This has been an enjoyable read. I appreciate you holding off on starting the thread so that there is a ton of content from the get go. This is a nice break from the usual piecemeal nature of build threads.
Knight is offline   Reply With Quote
Old 12-13-2015, 08:29 PM   #25
adept
Registered User
 
Join Date: Dec 2005
Location: San Jose
Posts: 305
My Ride: 97 M3, 03 M3
Send a message via AIM to adept
This is an amazing thread, and very informative. Bravo! Keep up the posts.
__________________
adept is offline   Reply With Quote
Old 01-08-2016, 09:28 AM   #26
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
Project Update for January 7th, 2016: So the 2016 racing season is almost here and we're thrashing to get the red 330 - which we are going to ALSO call JackDaniels (JD2!) - ready for NASA TTD events. And of course the NASA rules makers had to go and change things with the base classing of the 330, not in our favor. The 325 has been jinxed and has hogged a lot of shop time with repairs, chasing down the many CELs, and that's made less time to race prep the 330. We have done the initial fixes to the 330, however, and I'm been daily driving this. Quite enjoyable in stock form, but its just so "soft and squishy" with all of the BMW bushings and springs in place.

I'm going to post this update with a progress report on both E46 coupes, with some key items en route for the 330 that won't get here until next week. The first round of race prep will be in my next post, after (hopefully) 2 events in January. Let's get caught up on both cars, but first... The News.

NASA RULES CHANGES

I must have upset the rules gods last year because both of our TT-Letter builds took a hit in the 2016 rules: this E46 330 "JackDaniels" in TTD lost 7 points, and the C4 Corvette "DangerZone" in TTC gained 57 pounds.

Normally, late in December of each year NASA will release an updated rule set for Performance Touring, Super Touring, and Time Trial classes - all 3 of these groups use essentially the same set of rules. PTB-PTF wheel to wheel classes equate to TTB-TTF and ST1/2/3/U equate to TT1/2/3/U. Sometimes the rules aren't published until after the first of the year but this time the 2016 NASA TT rules came out on time, with nearly 8 weeks before our January 2016 event.



The 2015 NASA base classing chart above has been shown in this thread before, which was current for last year and many years previously. It was the same base classing (which had the same 39 mod points for as far back as I can see until 2015) we used back in 2009 to build our blue E46 330, which ran: 18x10" wheels, 285mm tires (+13 back then) and R6 Hoosiers (+10 back then), OS Giken LSD (+3), full coilover suspension with springs (+2) and double adjustable AST4200s (+3), aftermarket bars (+2) and bushings, full exhaust (header, cat & race exhaust, +5), cold air intake (+1) and tuning. Well the base classing changed for 2016, and it hurt this build.



As you can see in the 2016 base class listing, the E46 328 got reclassed "up" and lost two stars, and E46 330 got a new "star" added. Since the 328 went up a class it gained minimum tire size and actually lost some weight, so that is a wash. But the 330 got boned - each "star" is worth 7 penalty points, so that means we just lost 7 mod points on this 330 build to go from TTE to TTD (from 39 points down to 32). That is huge: 7 mod points is enough to account for a splitter (+3) and rear wing (+4). Or a race header/cat/rear exhaust (+5) and a Big Brake Upgrade (+2). 7 points just suddenly vaporizing on our build plan is a challenge, to be sure.

I was wondering where did this concern came from - am I being paranoid? Are they after me? Can the CIA read my thoughts?! The E46 330 has had the same base classing for over a decade, so are they coming after me? Well turns out this had something to do with the emerging SpecE46 series, and how those cars would fit in GTS and PTX classes. It still means we have to re-think the entire TTD build plan for this 330. No, going back to the 325 chassis we still have probably isn't a good idea, as we've already done things to that car just to make it sell-able, opposite from TTD prep. Knowing about this point change last year, though, would have probably influenced my decision to "double down" and buy this 330. Damn, this is just a kick in the gut!

My 2015 spreadsheet for the TTD build on this red E46 330 had the same 39 available mod points as it dod back in 2009, and was a pretty solid plan. We even had points to spare, and were going to do some "fun" mods to use them up! Ahhh.... "fun".

Here was the red 330's TTD plan with the old 2015 base classing (39 available mod points): Splitter (+3), E46 M3 front bumper cover ("air dam", +2), rear wing (+4), front and rear swaybars (+2), MCS TT2 coilovers & springs (+5), camber plates, 10" wide wheels, 245 mm (+1) Hoosier R7 (+10), poly bushings, racing seats, safety gear, sunroof delete, custom header & lightweight race exhaust (+5), cold air (+1), custom tune, better shifter, lightweight flywheel/clutch, and all that was legal for TTD - and we still had 6 points leftover!

While I had not planned on Big Brakes with the 330, after some meetings at PRI show in December we had strategic reasons for doing this upgrade on this 330 now - to test a BBK from a new manufacturer we want to work with. So aftermarket 4-piston calipers with 2-piece rotors were added to the list (+2). Again, we had the points to spare and still another 4 more after that. This plan was solid.

Until the 7 point 2016 rules change for the 330. I had to back to the drawing board and re-plan this build. We have only 32 mod points to play with on this 330 now, but still the same "wants and needs". We can keep the stock swaybars (2) and the 330 brakes (2) and meet the 32 point goal, but there were marketing and performance reasons to modify both. We'll keep looking at the points and post the classing sheets after our first event (which will have a lot of things missing, due to time constraints).

ROUND 17 of 325Ci REPAIRS

So many things have been fixed on this car since my last post - and we're still not done. I've stopped counting hours and dollars on the repairs we're doing to get this car sold - because it just hurts to know. Not only have the CEL issues not gone away they seem to be multiplying. We'll fix one round of CELs (and remove obviously crusty/leaking/failed parts) and a new group of 2 or 3 show up. It is maddening.



One of the "ugly" bits on the 325 were the seats. The leather on both front seats was trashed and the motors on the driver's seat were gone. We have race seats on hand for the red car so we robbed the 330's front seats for the 325, which are in better shape (no rips/tears) and in the matching black.



That car's driver's seat didn't work right when we got it - the power controls wouldn't move the left seat fore-aft. Brad and Olof took the seat out for a closer look, and lo and behold - one of the power seat motors was MISSING. I stressed about getting the right replacement unit, and there were dozens of BMW part numbers for different year E46 power seat models and different locations in the seat (all expensive), but what the heck? I had the guys yank the motor out of the up-down action, put it in the fore-aft spot, and it worked like a champ. So Amy can finally get the seat close enough to be able to drive in this seat, they look 100% better in the 325, and they put the old 328 gray driver's seat and the raggedy old 325 black passenger seat in the 330 - for now.



The shifter was so worn out that we replaced it with a Z3 1.9L shift handle, new lower bushing, and new shift knob. The shift knob was cheesy but in better shape the the 325's old knob, and the new piece is shown in the big interior image of the 325, above. A missing corner light was replaced on the front cover at the same time.




When the worn out shifter was replaced we went back with a Z3 1.9L handle, which shortens the shift throws dramatically by moving the pivot point at the lower mount (see image above - which shows the old 330 shifter and the OEM Z3 "short shifter" part). With a "fresh" handle (not a wobbly noodle), a fresh lower bushing, and a new shift knob ... WOW. That makes a night and day difference driving the car for only about an hour of work. No more missed shifts just driving around on the street, like before.

As I mentioned in previous posts the 325 was dropping fluids at multiple locations. The pool of oil and coolant below was from a typical overnight parking.



So the leak fixes were dealt with a couple of months back. Repairs included new valve cover gaskets, spark plugs, and oil filter housing gasket.



The valve cover gaskets and remote oil filter housing gaskets are super common places for these engines to develop leaks over time.



The entire cooling system had been replaced already but the remaining leaks were from a pair of plastic coolant lines that went from the head to the firewall/heater core, and specifically the O-rings in the ends.



The coolant lines break when you remove them, after they are this old, so those were replaced along with the leaky O-rings. After this round of repairs the 325 was finally leak free. The guys covered up all openings then pressure washed the block and oil pan when it was all apart, so its squeaky clean. This way we can see any additional leaks - so far, over a month later, not a drop is visible.



While all of these systems were apart the cabin filter and engine air filters were replaced, as were the oil filter (Wix) and oil (Mobil1).



During these leak repairs there were CEL checks being chased as well, trying to get the car inspectable. In Texas they don't care how rough the engine runs or how much fluid it leaks, but if there's a single Check Engine Light it fails. Olof replaced the intake manifold gasket (leaking vacuum), throttle body elbow (cracked), and the fuel filter. He also replaced all of the vacuum lines, vacuum switches, the entire CCV system, cabin filter, air filter, MAF sensor housing, and more. The only thing left is the DISA valve.

We did some cosmetic fizes to the 325 also. I found the right paint code in the engine bay (Stahlgrau Metallic, #400) and ordered a pre-mixed paint kit that had spray cans of this base color and a clear coat. Brad took the replacement lower headlight trim piece and painted it to match the rest of the car and then we installed those.



Olof tried to install another set of corner lights, but I not only ordered the wrong color (clear) they were the wrong mounting type, too. There are SO many different corner lights but this 2002 should normally use an '02-03 Coupe replacement style (certain shape and mounting tabs), which can come in clear, orange, or smoked.

I kept ordering 02-03 coupe lights and they never fit, so I took over and dug further. Turns out we used an E46 coupe 99-01 style headlight kit, which all M3s use. So the headlights didn't have the right slots or tabs to hold the later corner lights... eventually I found the Khoalty website (not amazon or ebay, which are terrible places to shop for lights, as I have found!) that had the RIGHT details listed for the various E46 models: I could choose the year (there were changes for many E46 year models) and body style (coupe/convert, sedan, estate) and color (smoke, clear, orange) and I got the right corner lights... on only my 3rd try! Looks like they have better quality headlights as well. Wish I would have found Khoalty.com sooner!



Not only do these finally fit the body and headlight styles, they are the right color to match the smoked lens headlights, and they don't need tape to hold them in place. Yea, its the small victories in life like this that are worthwhile.



We had already replaced and upgraded the front brakes on the 325, which I showed last time. Now that we switched cars for race prep and are making this 325 "ready to sell", I'm making sure it leaves the shop with all maintenance issues addresses. So the rear rotor and brake pads still needed replacement. So we ordered up new rear 325 sized Centric rotors and street pads and those were installed, shown above.



Last but not least, the front core support was replaced. We could have left the old tweaked unit in there but then the headlights would not have lined up. So I went ahead and had our crew pull the front bumper + cover off and replace the entire structure. Again, these are always black from the factory so it doesn't need to be painted body color, and the $54 replacement structure was already painted black. Sure enough as soon as that straight/new piece was in place the headlights finally fit right, Olof aligned the beams, and driving at night was no longer dangerous.



Whew, that's a heck of a list of repairs! And sadly there's still a few more little things to fix on this 325 before I feel its ready to sell. Of course the random CEL that keeps changing, but we've run out of old crusty parts to replace (except the DISA valve). Vacuum leaks, coolant leaks, and oil leaks are all 100% done. Honestly the car runs 100% better than it did when we bought it, and I've daily driven in this one when the 330 was being worked on, and its pretty dang nice. Just gotta get that last CEL to get the inspection wrapped up on the 325.

continued below

Last edited by Fair; 01-08-2016 at 09:56 AM.
Fair is offline   Reply With Quote
Old 01-08-2016, 09:31 AM   #27
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
continued from above

MEASURING FOR TTD RACE WHEELS

Finally we're past of the boring 325 repair pics. This section shows the wheel testing done many weeks ago on the 325, mostly because it was in the shop for repair work and already on the lift. Obviously the race wheels we end up with are for the E46 330, but they are identical when it comes to wheel mounting. The goal was to use the 245 R7 Hoosier we mentioned a while back, but s-t-r-e-t-c-h it out on the widest possible wheel that fits this E46.



I've built and raced cars in classes that had a strict "maximum tire width" limit (usually policed by "advertised section width" - the number on the sidewall), like in the SCCA STU classed EVO X above (it was way too heavy at 3600 pounds to be competitive against 3000 pound EVO 8 & 9s!). We have seen gains when taking the max width allowed tire for a class and stretching it out on a "wider than normal" wheel.

We tend to look at the manufacturer's recommended wheel width range for a given tire and go to the widest wheel shown, or even a little bit more. Hoosier states that am 8-9.5" wide wheel is optimal for this 245/40/17 R7. But another 1/2" of width is even better! For a 245mm tire I'd use up to a 10" wide wheel, which we're going to do once again. I've run 205s on 8.5" wheels, 275s on 11" wheels, and 315s on 12" wide wheels - when race classing tire limits were being built around.

Technically this NASA TTD build doesn't have a "max limit", but any tire we use wider than 235mm costs us points. A 245mm is +1, a 255mm would be +4, a 265mm would be +7, and on and on. Sure, I know for a fact that we could fit up to a 265mm wide tire on an 18x10" wheel under stock E46 fender contours with just some fender rolling. Been there, done that (see below).


18x10" wheel with 265/35/18 tire on 2001 BMW 330Ci - with camber and fender rolling only

Again, sometimes "bigger is better" has drawbacks. Not only does the 245mm tire cost less points than a 255 or 265, we get also get a big P-to-W ratio break (+0.8!) for using 245mm or smaller DOT tires. There's a particular 245 in the Hoosier catalog we like and have used on our TTC Corvette: the Hoosier 245/40/17. This tire comes in a number of compounds from Hoosier, but for competitive reasons we chose the R7 compound (+10 points). The R6 (+8 points) is being phased out, the A6 (+17) compound jumped up a lot of points last year, and the A7 (+22) has a horrendously expensive cost for this compound in TT Letter classes.



With the skinny E46 sedan wheels removed we snatched a 17x9.5" wheel and 245/40/17 Hoosier R7 off of the C4, which was also in the shop undergoing many updates and upgrades over the winter. The GM (5 x 4.75") and BMW (5 x 120mm) bolt patterns are close enough for test fitting wheels, but in reality you should NEVER swap BMW and GM wheels. The GM 5-lug pattern is really on a 120.65mm bolt circle, and that seemingly small (0.65mm) amount of mismatch can cause REAL problems at highway speeds or road course use - up to even lug bolts or wheel stud failures. For static use test fitting like this, though, there are no worries.



We worked with different spacers to make this C4 Corvette wheel fit onto the E46 at the front and rear, then measured the inboard and outboard tire clearances. This data was then used to spec a new BMW bolt pattern Forgestar 17x10 wheel and to use this same 245/40/17 R7 tire on the E46 for TTD use. The Corvette's 17x9.5" SSR wheel was a good "mock-up" for the E46 and we found the specs we needed to make it fit with minimal fender rolling work. Its always nice when you can base your wheel/tire combo measurements off of a wheel that is "close" to the final goal.



If we did our math right we should have a 17x10" wheel that fits the E46 front (with a spacer) and rear (without) correctly, once the coilovers, new ride height and camber plates are installed. The wheel order was placed for Forgestar F14s in 17x10" many weeks ago and we waited....



As I was almost done writing this update a pallet of wheels arrived. Luckily one of those sets was the 17x10 F14s for Jack Daniels 2! We ordered this set "raw" to save build time and potentially to let us add a unique finish for our shop car.



We will test fit these later today, and then take 3 sets to our local powder coater, since they are all getting custom colors that Forgestar doesn't normally do. These should be on the car early next week, along with a ton of other upgrades.

SOME 330 REPAIRS

In the last post of this thread the Hellrot red 330 had only received some new rear control arms, idler pulleys and an air pump. It still had a single pair of CELs and I thought there were going to be many leaks to fix. The 325 had been such a nightmare I assumed the 330 would as well.



Turns out we were really close to getting the CEL light extinguished for good on the 330. All it needed were fresh spark plugs, some fresh vacuum hoses, and a vacuum switch on the back of the cylinder head. Ryan stepped in and removed the cabin filter housing at the back of the engine bay and got access to this tiny little switch.



Once that part was replaced and new vacuum hoses in place, he bandaged up his cuts (its a shredder back there) and fired up the engine. The old CELs were cleared and Amy drove the car. That was a couple of months ago and the car has been CEL free ever since. The inspection was passed with flying colors and this car is now road legal. I wish the 325 would have been so easy...



One thing I did one weekend was "de-tint" the car. Since the first night we bought this car, it has been virtually undriveable at night with the windows up. The side windows were SUPER dark, the back window might has well have been painted black, and even the front windshield had some tint on it. When I went to pull the tint off I was prepared for the worst - razor blades, special sprays, heat guns, a steamer... didn't need anything. It all just peeled right off with minimal effort.



I knew there was a 6" strip of super dark tint on the top of the front windshield but as I peeled this off I found that the ENTIRE front windshield had another layer of tint, which I then removed. All 4 of side windows also had TWO layers of tint, and the back window had two VERY dark layers. I removed it all except for one layer on the rear window, which I might still take out. NOW we can see at night and the car has proper track visibility. Good grief the tint was so janky before!



After I had this mess all cleaned up I went ahead and got an initial weight on the 330. With virtually no fuel and no trunk junk it weighed in at 3180 pounds. That's only 14 pounds heavier than my blue 2001 330Ci, which was identical to this except it had manual seats (and was weighed with a tick more fuel, as shown).



With a target TTD race weight of 3285 pounds with driver and fuel we still need to knock out about 125-150 pounds. Between the sunroof delete (-30 pounds), race wheels (larger but lighter), racing seats (probably -40 pounds per side), lightweight flywheel and clutch (-15 pounds) and race header + exhaust (-50+ pounds) I know we can get there. We might even have to add ballast, but that's part of the plan.



The original seats were already removed from the 330 (to go into the 325 for selling), the carpets cleaned, and I have cleaned up the exterior a little. Really liking the 330 now and I've been daily driving it for a bit. Of course there are still a few repairs to make.

What I thought were typical top end oil leaks turned out to be some residue from power steering fluid spill and these repairs have been held off for now. The coolant system replacement is waiting on a lot of new E46 330 cooling system parts to be released (almost out) and that will happen soon. The heater isn't working due to a broken center vent/actuator that we'll attack. The ambient air temp sensor is gone and flashing high/low temps. Of course the stock shifter... ugh. Its shot and has to be fixed.



There are still a number of repairs, reliability upgrades and finally some racing modifications that we're about to make to the 330. See the next section for more details on what's coming up.

WHAT'S NEXT: ROUND 1 OF 330 MODS

We have quite a list of mods for Round 1 for the red 330.


  • Install new Front LCA + Bushings: We have the same Bilstein OEM replacement control arms we used on the 325 arriving for the 330. It will also receive the same 2-piece LCA bushing upgrade. The front bushings and ball joints are very worn on the 330 and this is noticeable every time I drive it.
  • Install Bilstein PSS Suspension + Camber Plates + RSMs: To test some theories we are going to run the 330 at a few tracks on the new 245 R7 Hoosiers with 2 different shock setups. The baseline will be the affordable Bilstein PSS monotube inverted coilover, and of course we'll use Vorshlag spherical camber plates and rear shock mounts with this. Later we will upgrade to MCS TT2 coilovers and we can test the car at the same tracks.
  • Cobra Seat Install: This I talked about last time and Olof has already built the bracket for the chassis. We were waiting for the side brackets and slider to get here so this will be installed next week.
  • Short Throw Shifter Upgrade: Same details as the 325Ci repairs shown above
  • Install Motor and Transmission Mounts: Gotta keep the drive train locked down or risk a Money Shift! Our Nylon motor and red poly trans mounts are ready to go in.
  • Track Brake Pads + Fresh Rotors: We're going with Carbotech XP12 pads front and rear with Motul RBF600 fluid. We'll look at the caliper temps after these events and figure out if we need to find points for a BBK or just do some brake ducting to keep things safe
  • Rear Subframe Repair + Bushings / Rear Diff Bushings / Replace RTABs: This is a huge task, easily 18 hours, and we're running short on time. The stock diff mount bushings and RTABs are worn out, though, and at least those parts will be done before the two January track events.
  • Install 17x10" Forgestars: See the wheel test fitting on the 325 above. These just arrived

That's a lot of wrenching planned in the next 10 days time! Yikes.



Here are our first two events. Amy will be the primary driver in the 330 and I will mostly drive the C4. Since we're "Team Entering" both cars I and might hop in the 330 for some setup laps in the red 330, and possibly even to set a competition time at the NASA TT event.

So that's the current plan for the 325 and 330. The 325 is almost repaired enough to be sold and the 330 has a path of modifications and development to hopefully get us up on the podium in TTD. Our first two track events in the 330 are looming but "no plan survives contact with the enemy", so I fully expect priorities and plans to change after these two track outings.

We still have to address the cooling and oiling issues of this engine, there are big goals in mind for the exhaust and aero development, more safety upgrades that must be done, and more. Stay tuned to see what happens next!

Cheers,
__________________

Last edited by Fair; 01-08-2016 at 10:17 AM.
Fair is offline   Reply With Quote
Old 02-11-2016, 02:57 PM   #28
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
Project Update for February 11, 2016: We have had a busy few weeks with this "Street Driven Track Car" BMW build, our red 2001 BMW 330 we are calling Fireball. We have upgraded the suspension, done some more repairs, added a race seat, installed bigger 17x10" wheels and Hoosiers, slapped on some decals and finally went racing. The 330 has been driven at two competition events, SCCA Club Trials at MSR-Cresson and NASA Time Trial at MSR-Houston, in back to back weeks.



We made some changes between the two rack events to address some spring rate deficiencies and have plenty more in store. Lots of internal discussion has led us to change the build plan for TTD again, as the 7 points we lost for 2016 made that necessary. Let's get started.

ROUND 1 OF MODS TO RED 330

I listed a number of performance upgrades we had planned in my last post and our shop schedule freed up considerably in January, so Olof tackled many of these on the red 330.



Front Lower Control Arms (LCA) on the E46 non-M are an aluminum design with 2 integral ball joints, which aren't serviceable. These joints were worn out so both arms were replaced with OEM replacement units from Febi Bilstein.



The old front LCA bushings were trashed, which is super common on these BMWs. Instead of the OEM style rubber bushings, which allow a lot of toe change under braking even when new, we installed the 2-piece Powerflex "Race" LCA bushings. All the slop in the front wheels I could feel while driving is now gone. To keep these from eating themselves we installed grease zerks in the "lollipop" housings with holes drilled all the way into the dual bushing junction. A little grease twice a year will keep these lasting forever. We don't install any poly suspension bushings without grease zerks in my shop - I've seen the long term results when you don't (the bushings can wear out in 1-2 years).



We used the same low cost Shifter Upgrade parts as shown on the 325Ci in a previous installment in this thread. A fresh Z3 1.9L shift handle (shorter throw), new bushings and clips, and all of the slop in the worn out 330 shift lever and old bushings is gone. This makes such a huge difference for so little money. Like most E46 manuals, the shifter doesn't "self center" well (align with the 3-4 gate), but that's inherent to the design. The driveshaft bushing (guibo) was also cracked, so it was replaced while the shifter was being serviced.



One of the major deficiencies of all modern BMWs are the fluid filled motor mounts and wear prone transmission mounts. The body-mounted shifter is already sloppy enough with a rubber bushing in the middle of the shift handle, but when the motor + transmission are flopping around under engine torque it is easy to have the shifter mis-align during spirited driving or track use.



As expected, these 162K mile motor mounts came out of the car in pieces, then leaked their goo all over the place. The OEM transmission mounts were cracked and very mushy, so they were removed as well.



The shifter fix involves not only the freshened shifter parts but also our firmer Motor and Transmission Mounts. I chose the Nylon version of our motor mounts and stiffer red poly version of our trans mounts, and they really make a big difference in throttle response and shift feel. These are the stiffest of two options we offer, and they definitely add significant NVH under 1500 rpms, but the shift feel with the drivetrain locked down is like nothing else. We would have less NVH with our red poly motor mounts and orange poly trans mounts, which are still stiffer than stock but don't have as much buzz at idle.



To help slow the car down on track we installed all new brake parts, with Carbotech XP12 pads front and rear, Motul RBF600 brake fluid, as well as fresh Centric Premium 330-sized rotors. We also added our 90mm wheel studs, lug nuts, and AP caliper temp strips were applied to the calipers (which we looked at during and after both track events). Even though these brakes worked well as-is we still might burn 2 points for a BBK upgrade in the future.



Rear Subframe Bushings + Rear Diff Bushings + new RTAB bushings and Limiters was a big chunk of time. The correct rear chassis reinforcement kit wasn't in stock here the day Olof yanked the rear subframe, so just the bushings were added and we took a look at the crack-prone E46 rear floor area where the subframe mounts.



Of course as soon as the subframe was out and the sheet metal cleaned off, a big 5" long crack was found in the trunk floor near one mount. The percentage of E46 chassis we've seen with cracks in the floor, once the subframe is removed, is nearly 100%. Olof cleaned and TIG welded this crack then primed the area. When the exhaust is out later this season for upgrades we will yank the subframe out once again, weld in the Turner subframe repair kit (the only one that is legal for the E46), and get this area properly reinforced.



After the stock bushings were removed from the rear subframe, new Powerflex Black Race polyurethane bushings were pressed in. This included 4 subframe bushings and 3 differential bushings (2 in front, one in the rear).



Getting the stock bushings out is a bit of a job, and beyond the capabilities of many DIYers, due to the special tools required. We have a BMW-specific bushing service kit and massive C-clamp mobile pressing tool, a 30 ton air-hydraulic press, and it still took another custom tool to get some of these out. Most of the BMW bushing tool kits are specific to the M3 cars, but one of the non-M E46 subframe bushing pairs is so different that Olof built this tool. It fits inside a pair of cavities and allows the press to line up better. Cutting or burning these out is the other option, when you don't have the right tools. That is a stinky, messy, time consuming way to do this work.



In these fixed mounts (diff, subframe) and in single-axis of movement suspension mounts, polyurethane can and does work well in place of the soft rubber the OEMs always use. The front LCA has a bit of a twist and turning angle to it, but the 2-piece poly bushing is a good solution there. The Rear Trailing Arm Bushing (RTAB), however, has a LOT of movement in 2 opposing axis, and going polyurethane here is a bad idea for most end uses. It can add a lot of bind in the rear suspension.



We used our Z4M Lemforder bushings (that we had Sachs/ZF/Lem bring to the US market outside of the dealership channels, years ago) and our UMHW RTAB Limiters to sandwich this bushing, which allows for enough movement but not excessive toe change out back. The Z4M (above right - with the bigger gap) is the same durometer rubber as the E46 M3 version (shown on the left of that image), but the Z4M unit is made larger so that it is pre-loaded more when it is compressed and installed into the trailing arm. The old stock RTAB bushings were all cracked and shot, of course. You can feel the difference when driving with fresh RTABs.



I talked about the Cobra Seat Install last time and installing this took a lot of measuring, test fitting, and fabrication - but its done, and fits Amy and I both. Olof started by taking a set of steel OMP side brackets and cutting, drilling, and modifying them to fit this seat with the lowest possible height and still leave room for a slider underneath.



I don't know who they are making these side brackets to fit, but we've tried all of the brands and they NEVER fit into cars with adult humans without modification. We tend to chop 1-3" of height out of the brackets, drilling new thru-holes lower in the sides and cutting away unused upper portions. Painfully common, otherwise your head is above the roof.



And by the same reasoning, the "normal" width Cobra seats are also painfully too narrow - we tend to go with the "under 130 pounds only" rule on the regular width, and insist customers test sit in these before we will order this size. The "GT" width (+30 mm wider in the butt) is what fits most adult humans for Cobra seats. I've got a pair of the "regular" (narrow) width Cobra Suzukas I'm stuck with right now, due to a sizing mistake when ordering, ugh. Don't make the same mistake - always test sit in the exact model and size seat you want before ordering. That's why we keep several race seats in our lobby.



The modified side brackets were fitted to the seat and a custom threaded bung was machined on the lathe, a hole was cut in the bracket, and this was welded to the inboard side down low. This is where the BMW lower seat belt buckle was bolted, which came off the OEM front seat. There's some wiring that goes to this and it also has some sort of crash sensor pre-tensioning tricks. It moves with the seat, just like it did from the factory, for better alignment to your hip.



The chassis adapter brackets were also laid out and designed, then fabricated from flat steel plate and some square tubing. These are super low profile to keep the seat as low as possible, to fit my torso under the upholstered sunroof headliner with a helmet on. We were trying to lower the seating position about 3 inches, which is tough. The square tubing was added for two anti-submarine mounts. These are threaded ring mounts (G-Force) and have anti-crush sleeves welded into the holes through this tube.



Many racers and internet experts frown on seat sliders, but it is a necessary evil in many race cars that have more than one driver (we've seen this done in most endurance cars, shy of pro racing). Amy and I have very different heights so the driver's seat needs to be low for me at the rear setting, but taller for her up and closer to the front. This means the seat slides forward and moves up at an angle. We used Cobra dual locking sliders, which are low profile and strong. The sliders bolt to the modified OMP side brackets and the bottom of the sliders bolt to our chassis bracket.

continued below
Fair is offline   Reply With Quote
Old 02-11-2016, 02:59 PM   #29
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
continued from above



The Cobra sliders allow for about a foot of fore-aft movement of the seat, and when locked they are solid. After this seat was wrapped up the factory 3-point belt was installed and routed through the lap belt hole in the outside of the Cobra seat. The lower buckle is too rigid to fit through the mating hole on the inside, but there is good belt wrap around the hips with this setup - its safe, and more reasonable than using 6-point belts on the street.

We don't have shoulder mounting provisions for a real racing harness just yet, so we left the Scroth 6-point belts out for now. I will talk about the upcoming roll bar / roll cage at the very bottom of this post. The lap belts will go into another pair of clip-in G-Force eyelets mounted into either the cage or the floor, depending on how we do that.

FIRST OF THE POINTS MODS

So far all of the above upgrades were "zero point" modifications, according to the 2016 NASA TT-Letter rules in section 8.3.I, subsections a through h. This section of rules spans 4 pages and lists dozens of parts and modifications that are allowed in all TT classes without any restriction or classing penalty. The items below, however, do cost "class points", of which we have only 32 points to work with and stay in TTD. Again, each car gets 19 points before its first class jump and 20 per class after that. Our car started TTE*, which meant we had 39 points to get to TTD, minus 7 base class penalty points for the newly added *, so 39 - 7 = 32.



Obviously Vorshlag is a suspension shop and we cannot overlook this first and most important mod (well, outside of tires). When it came to suspension upgrades there are a number of ways to spend our points. The stock E46 330 springs are super SUPER soft, and of course we will be upping the rate from the stock ~100#/in front springs to something much more appropriate for track use with Hoosiers. We could have hit the "easy button" and just jumped right to MCS TT2 double adjustable coilovers, but I am using this car to test out a few products that we don't already sell, because customers want some lower cost options that we have track proven.



At Vorshlag we're sort of known as "shock snobs" and have preached the benefits of monotube coilovers for many years. We've worked with too many twin tube shocks and know their limitations all too well. So for this first set of dampers on the E46 we went with the most affordable, quality, inverted monotube on the market - the Bilstein PSS. This kit included the 40mm shaft inverted monotube front struts, inverted rear monotubes, adjusters on the front coilover struts, adjustable rear ride height platforms, four beehive springs, and the springs are all made to bolt in or work with the factory front upper spring perches.



This is just one of several coilover shock kits Bilstein makes for many different street cars, which include the PSS, PSS9 and PSS10. The PSS is a non-adjustable version that only has height adjustment, no valving adjuster knobs. The PSS9 and PSS10 have a single adjustment knob that controls both rebound and (to a lesser degree) compression, with the older PSS9 style having 9 clicks and the PSS10 has 10. This non-adjustable PSS was thought to probably not be appropriate when it comes timed racing events, but we've seen these work fairly well for street setups and some mild track use. In hindsight we should have started with the adjustable valving PSS10, but I'll get to that after my race write-ups, below.



The PSS (aka: B14) kit for the non-M E46 BMW is very affordable, with an MSRP price of $1493.08 (including shocks, springs, and ride height platforms) but a current street price of $1080 (TireRack). The adjustable valving version of this kit is similar but has that damping knob, with an MSRP of $2576.50 and a street price currently closer to $1675 (TireRack). I'm not listing our prices or linking to our product pages because some forums I'm posting this thread this is verbotten.

Bilstein doesn't set a minimum advertised price for their dealers, and they will let anyone resell their stuff, so Amazon, Tire Rack and fleaBay have driven the prices down so low that its nearly impossible for real shops to sell these. For that reason alone I almost skipped this Bilstein step, but they are still a decent shock and we tested them even knowing we will likely never sell many against Billy's eBay page from his Mom's basement.



To make this basic PSS kit worthwhile on track we tested these with our E46 non-M camber-caster plates and spherical rear shock mounts, shown above. This is why most folks buy Bilsteins from us - we upgrade parts of their kits they don't include. Since we hadn't installed this particular PSS kit on an E46 non-M chassis, Olof did a shock length test we always do.

This meant he installed a front strut without a spring and tested the total stroke of the strut, then we could calculate optimum ride height and usable bump and rebound travel. Anything can be run too tall or too low, so this type of test helps figure out the "sweet spot" for any given shock. Then the springs were installed and front ride heights set. A fresh set of OEM E46 swaybar endlinks were used but the stock swaybars were kept at both ends - for now.



The front camber plate was also setup with a bit more positive caster and then a good bit of initial static negative camber was set, based on numbers we've used on other E46 track cars for over a decade. The rear of the PSS kit has a simple ride height adjuster and another beehive spring, plus the rear shock. The Vorshlag rear spherical upper shock mounts (RSMs) bolt onto the shock and these then to the chassis with our top mounted reinforcement plate (to prevent cracks in the tub).



This is the final ride height that had optimal bump and rebound travel with these shock lengths. The non-stock shocks cost us +3 points, the springs cost +2, and the inverted strut (not factory style) cost us another +1. So a total of 6 points was burned on these dampers. Funny enough, a set of double adjustable non-inverted MCS coilovers and proper springs would only be +5 points total (and clearly have more potential). This is why we call the MCS internal singles and doubles "TT1" and "TT2" - because they work so well in TT-Letter classes. But that's for later - for now we have the PSS kit.

The crew here set the base camber and toe at both ends, then they corner balanced the car with a driver in the seat, then took the car for a laser alignment to fine tune the final settings. Jason had digitally measured the spring rates of the PSS kit's front and rear springs, which were alarmingly SOFT. This worried me but I figured we could try this out at the SCCA Club Trials event, which was more of a tire test for us. What could go wrong?



The car rode pretty well on this setup and Amy drove it the very next day out to MSR-Cresson for the first track test. We left the stock swaybars in place and planned to just mount the new wheels and Hoosiers tires at the track.



The wheels themselves are unlimited and are a "point free" mod, but tire size and compound changes do cost class points, and we've burned 11 total on this 245mm Hoosier R7. Again, our car's TTE initial base class gets assigned a 235mm base tire, and we're going up 10mm from that to 245mm, which costs us +1. The Hoosier R7 compound is +10, and we feel it is well worth it.



Olof mounted an old set of used 245/40/17 Hoosier R7s (purchased for our TTC classed 1992 Corvette in January of 2015 and used for 2 race weekends already) to the custom spec'd BMW-fitment 17x10" Forgestar F14s I showed briefly in my last post. We specified these based off of previous and current measurements to work on the rear as-is and to fit up front with a 5mm spacer, which would allow for easy tire rotation.

This is a BIG wheel width change (up from 7.5" wide) and this 245mm tire gets stretched out nicely. Normally I'd use a 265 or even 275mm tire on a 10" wide wheel, but in this case we are working around a tire width points restriction, so we're "tricking" the 245 tire into acting wider that it normally would on an 8" wide wheel. Normally an E46 non-M like this could fit a 245mm tire on an 8" wide wheel with ease, and we've done 255mm tires on 9" wide wheels many times with no need for camber, fender rolling, or other tricks.



At the final hour before dark on the Friday before the track event we washed the BMW and Jon installed some class letters and numbers and a few other small decals. We were so out of time we barely had time to test the new wheel and tire briefly on each end, gave it the "looks good enough!" approval, then stowed the race wheels and tires into the trailer and re-mounted the stockers for the trip to and from the event. I brought the fender roller just in case, as I had a feeling this 10" wide wheel (a fairly extreme fitment for an E46 non-M) was going to cause some tire rub even with the 245mm tires.



At this point the 330 was ready for it's first baseline track test. I suspected the spring rates would be lacking, but wouldn't know until we put the Hoosiers on and tested it in anger. On the very same day the 330 work was wrapping up, Brad, Ryan and I were thrashing to finish the Corvette's winter upgrades - new engine wiring harness, later ECM and MAF upgrade, dyno test, Optispark change, and fender mods to clear 18x12" wheels and 335mm front and 345mm rear Hoosiers. Two shop cars getting major updates + customer work made for one very busy week.



This is the spring rate chart that we made after digitally measuring the included springs that came in this Bilstein PSS kit. You can see how soft the front springs are, but they are fairly linear at an average rate of 156 #/in. This is too similar to the stock BMW rates, which are worthless for competition use. The rear rates are lightly progressive but still very soft, due to the motion ratio of the rear suspension - only about 50% of this 265 #/in average rear spring rate is seen at the wheel (so about 135 #/in wheel avg rate). These soft rates explain why the 330 looked like it was about to roll over at the SCCA Club Trials, below...

SCCA CLUB TRIALS AT MSR-CRESSON, JAN 16, 2016

This event was on our schedule for several reasons. First, we wanted to go see another Club Trials event with the Texas Region SCCA. We had run this event in January 2014 where our TT3 Mustang set the quickest time of the event (by 4 seconds). Back then, and even though it was a COLD January event that year and there was a LOT of traffic to deal with, we still had fun and got a few traffic free test laps in. Also, a lot of local racers and friends would be there, and lastly we needed a good test day on track to test the big changes to both the 1992 Corvette and 2001 BMW 330. This would be the first time ever on track for the E46, and the first time the Corvette had been driven since March 2015.






I'm going to try to cover this event quickly, as it was only a 1 day test and we didn't really care how we "finished". This was really just an HPDE day that they were calling a "Club Trial" competition event. They had transponders and took times, but there weren't any classes, so they used an autocross PAX factor to post "final results" afterwards. We ignored that and just looked at our lap times compared to previous NASA events run on this 1.7 mile CCW course. My previous best in the TT3 car was a 1:18.6 at the 2014 Club Trials and a 1:17.3 at the March 2015 NASA event in the same car.



Anyway, we got to the track at 6 am, an hour before sunrise, and were working in the dark to have both cars ready before a 7 am driver's meeting. The C4 was unloaded, Amy and I did the wheel swap on the BMW, the AIM Solo lap timers were mounted, and we checked everything else we could under pitch black skies. The driver's meeting took a bit and after we got out, right as the sun was coming up, we were greeted by Brad and Olof from Vorshlag who had come to help. This became an eventful day of "track side car mods" so their assistance was most welcome.



The SCCA Club Racers had 25 entries spread across 5 run groups and Club Trials had 30 entries jammed into 1 run group. This is a 1.7 mile course and 30 cars spread out across a VAST array of skill and prep levels makes for a crowded track, but again - this was just a test for both cars.



They initially gridded my old Corvette in P1 and stuck Amy about a 1/4 of the way down the order for the first session. We went out and it was COLD with 40 degree temps and 20 mph winds all day. I could hear all sorts of tire rub on the C4 and fought with that most of the day. Turns out Amy was having similar tire rub issues but she just ignored it.



She drove the whole session in the 330 with the rear Hoosier tires rubbing the rear fenders badly, sending up plumes of tire smoke, but at least she didn't spin. Amy hasn't had any seat time since April of 2014 and she was really rusty, struggling to learn this car. She didn't trust the brakes or cornering power, but I was so busy testing in the Corvette and trying to not freeze to death I never got a chance to ride right seat to help push her driving.



As you can see in the image above, the Bilstein PSS coilovers were visually sprung too softly and allowed a TON of body roll, so I knew fairly quickly we'd be doing a spring rate upgrade immediately after this event. That is the result of soft springs, stock swaybars, and a sticky R7 in only 245mm width. What did we expect? The PSS spring rates are nearly stock... we should really be using something around 600 #/in in front and 750 #/in in the rear. On our blue 2001 330 we used 750 front and 900 rear with 285mm A6 Hoosiers and it has a LOT less roll.

continued below
Fair is offline   Reply With Quote
Old 02-11-2016, 03:02 PM   #30
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
continued from above

FENDER ROLLING THE E46 NON-M

Quick side note during the race coverage...



After the 1st and 2nd track sessions at this Club Trials event, Olof and Brad leapt on the 330 to try to remedy the rear tire rub. Track side fender rolling sucks - this should always be done in the shop! - but parts delays & C4 prep ruined our schedule on the E46 the week before. It was "do it here" to keep from ruining the day (and the tires) or "head home".



Normally this would have been done at the shop, with the car on the lift and better access to power tools. With decent skills you can do this job in about 3-4 hours for the rear fenders of an E46 and not crack the paint. The goal is to roll the square rear lips flat against the outer sheet metal, then to push the entire fender out for even more room. These pictures are from when I rolled the fenders on my blue 2001 330 back in 2009 to clear 265/35/18 tires on an 18x10" wheel - which is almost the same width as this 17x10" wheel and 245 Hoosier.



Before you can even start with the fender rolling tool itself you have to grind and cut a bunch of hard epoxy sealer out from the inner lip of the rear fenders. Three layers of sheet metal are joined here and BMW seals it all up with this thick yellow goop that turns to a concrete like consistency. At the track Brad and Olof had to painstakingly cut this stuff out with box cutters, knives and screwdrivers. In the shop it goes faster with cut off wheels and wire wheels on 90° die grinders. It still makes a total mess, even in the shop.



Once the goop is all cleared out the horizontal lip on the inner rear fenders can be heated up (a pair of 500 watt lights, heat lamps, or a friend with a heat gun), the paint softens up a bit, then you go to town with the fender roller. There are a lot of adjustments that need to be made to slowly roll roll roll that lip vertical. Pressure is applied to the bottom of the control arm to push the roller into the arc you want. And it takes more clearance than you think - we like to install the rear wheel and tire, remove the rear springs, and push the tire up all the way to the suspension bump limit of the rear shocks. Then still add a little more... if you can fit your hand in between the tire and the fender at Full Bump then it just might clear. Only hard track testing on the actual competition tire can tell you for sure!



On the front the procedure is much easier and you can usually roll the E46 fenders in under an hour. The sheet metal is only one layer think, as the fender is a simple stamped piece and not a multi-sheet thick part of the unibody. For just a bit more room I like using a plastic faced hammer on the inner lip then slowly work it up and flat to the outer face. I use a flat faced body dolly on the outside of the fender, wrapped in heavy leather to protect the paint. Of course the paint needs to be warmed up to prevent cracking, but you can never guarantee that. On this day, with Amy driving, she wasn't seeing any front tire rub so we left that end of the car alone.



OK, back to the Club Trials event. I was having all sorts of trouble on the Corvette, as we had moved from a 245mm R7 to a 345mm A6 Hoosier. This level of grip in no way worked with the rebuilt factory Bilsteins on this C4 and the rear was bouncing all over the place. Still, somehow this session 3 time in the video above was the quickest time of the day at the Club Trials with a 1:23.2.


This car was not TTC legal with the tires used during this test and would eventually be run in TT2

We both ran our cars in session 4, where I was gridded P1, but it started to rain before we went out. After a number of passes I got little bursts of clear track, and the rain wasn't much more than a sprinkle. I was gaining confidence in this janky Corvette tire test and taking corners faster, braking less and less for the high speed sweepers like Big Bend and Ricochet. Still, my times were 5+ seconds slower than I ran in the TT3 car 2 years earlier. Everyone was off the pace and both Club Trials and Club Racers alike commented on the lack of grip that day.



Amy was running 1:33s in the dry, but during the slightly wet session improved to a 1:32 lap time range, so her confidence was getting better. These times seemed nowhere near what I thought this BMW was capable of on these tires. Granted, it had a lot of body roll but damn that's 5 seconds off the TTD record of 01:27.515, set by a BRZ back in 2014. We didn't have a 2nd video camera for her car this weekend so I cannot see how she was driving. She had an AiM Solo lap timer in the car, though, so she had predicative lap timing at her disposal. She complained of a lot of traffic, but we all saw heavy traffic this day.


Raw time results from session 3 (dry) and session 4 (wet). DangerZone was quickest of the day?

Ideally I would have driven one session in the 330 to get a feel for the setup myself and see if a "driver change" could improve our times. The weather was getting colder and a rain or snow storm was predicted to hit any minute, so I decided to let her get as much seat time as possible. After 4 sessions the rain and temps started to drop so we packed up the Corvette, swapped tires on the 330, and headed home. There's nothing more exhausting than spending a very cold day shivering in bitter wind chill conditions + driving in 4 sessions with a wonky setup (the Corvette).

CHANGES AFTER MSR-CRESSON

There was only one week between the MSR-Cresson event with SCCA and the season opening NASA race at MSR-Houston. Amy and I have both driven that track and we both needed to score points in our two TT cars to help start the 2016 season off right. We felt like the track side fender rolling the weekend before was probably sufficient and honestly our shop schedule got busy with customer work, so we tried to do as little as possible to both cars that week. I took the C4 for official dyno tests after the event and the 330 got a new set of springs.

The coilover spring rates we chose for this next segment of the suspension test were fairly conservative at 350 #/in front and 450 #/in rear. Compare that to the PSS rates of 156 #/in front and a progressive spring with an average of 265 #/in rates at the rear. To the front rate went up by a factor of 2.2 and the rear by a factor of 1.8... so nearly double the rates.



Normally with AST, MCS or Moton adjustable monotube coilovers for an E46 we would start with rates at 450F/550R, then jump to 500F/550R, and even 650F/750R rates for our 3 basic spring kit options. My blue 2001 330 coupe used 750#/in fronts and 900 #/in rears with a 285mm Hoosier R6, as shown above. It cornered much flatter even with a +40mm wider tire of similar compound.



Usually tire size and compound dictate how far up the spring rate ladder we climb, as well as intended use (dedicated race car vs street car, or somewhere in between). To convert these Bilsteins to regular 60mm coilover springs we swapped the OEM perches on the front camber plates to a pair of our 60mm upper perches. That converts from the goofy tapered spring that came with the PSS kit, which is made for the OEM E46 non-M upper strut mount and upper perch. Out back a pair of 60mm springs got our spring alignment cones, but we managed to keep the Bilstein ride height platforms that came in the PSS kit.



The only other changes made before the NASA race were adding some decals. Jon made some huge Vorshlag decals but only had time to install one side before we loaded up and headed to MSR-Houston on Friday.



Jon also added decals for some of the companies who parts we were using on this build like Forgestar, Bilstein, Mishimoto (more on that in my next update), and of course Hoosier (for potential tire contingency).

NASA AT MSR-HOUSTON (CW) JAN 23-24, 2016

We took both the Corvette and BMW to this 2016 NASA season opener event at MSR-Houston. We loaded up Friday morning and slogged through 6.5 hours of driving, most of which was burned inside the city limits of Houston dealing with their nightmarish traffic (normally this is a 4 hour drive from Dallas). I was towing the Corvette (which was being moved up to TT2 class) and Amy drove the BMW down, which she said was "bouncy" with the new springs. Hmm...



Of course when we arrived it was pitch dark and the paddock was packed. We got lucky and found a wedge shaped spot close to grid where we unhooked the trailer and parked the BMW. Amy raced over to tech and managed to get the car inspected for Annual TT Tech and a new Logbook.



The 330 also weighed 3434 with me in it after one TT session of four that I drove it over the weekend (I drove it in 2 TT sessions Saturday and 2 more on Sunday). That means this car is nearly 150 pounds overweight (class minimum for ths car is 3285 pounds). In TT letter class you don't have to bring a certified dyno sheet if you haven't touched the motor or done any power mods, which we have not on this car - yet. I suspect based on other E46 330s with this 3.0L M54 engine I've dyno'd, plus the dyno we did on the 2.5L engine in the 325Ci, this car probably makes around 180-190 whp.

Goal Power and Weight for this 330 in TTD:
3285 pounds / 13.45 ratio = 244.2 whp

Assuming the car dyno's on the high end at 190 whp, we're still pretty far away from the TTD class limit of 14.25:1 or our modified 13.45:1 ratio we can run at 3285 pounds with the 245 mm tire bonus (+0.8 bonus). So I figured we would be struggling on the straights at this event. And we were.

8.1.2 Minimum “Adjusted Weight/Power Ratios” for each Class
TT1 = 5.50:1
TT2 = 8.00:1 <- where the C4 should be
TT3 = 10.00:1
TTB = 10.50:1 <- closer to where the C4 is (11.1:1)
TTC = 12.00:1
TTD = 14.25:1 <- where the 330 should be
TTE = 16.50:1
TTF = 19.50:1 < - closer to where the 330 is (18.1:1)
  • E46 330: 3434 actual weight / 190 whp guesstimate = 18.1:1 P-to-W
  • C4 Corvette: 3188 actual weight / 288 whp = 11.1:1 P-to-W

In reality the power to weight ratio of our setup at 3434 pounds was closer to TTF than TTD, which explained why we couldn't keep up with some of the TTE prepped Miatas on straights at this event. We knew this car was under-prepped this time and were just trying to get some points during this season opening weekend for use later in the season (same could be said for the C4, which was closer to TTB's P-to-W than TT2 where we ran it).

continued below
Fair is offline   Reply With Quote
Old 02-11-2016, 03:04 PM   #31
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
continued from above

We entered two Team Vorshlag entries, which allows all team members to drive either car during competition. The plan was for Amy to drive the 330 most of the TT sessions and I would hop in if we needed, then I'd drive the C4 in all other TT sessions.



Well, to put it nicely, Amy was "off her game" all weekend and not competitive in TTD. At the same time my Corvette was a big hot mess at this track (the stock shocks could NOT handle the grip from the 345mm Hoosiers with the bumps of this track), and I only put in one session in the C4 each day, just to get a few points for TT2. Due to these circumstances I ended up taking two TT sessions in the TTD car E46 both days, to try to wring out some times and score points for this Team entry in TTD. This was my first time to drive this 330 on track and I quickly realized how much work we had left to do.

For whatever reason, Amy was 5-7 seconds per lap off my pace in the E46 - she just didn't feel comfortable with the car or confident in the setup. Strangely, in the TT3 Mustang she was often in the same second as me - a much faster car with much higher grip limits. I did ride along with her in the E46 during an HPDE 3/4 session and coached her from the right seat. In that extremely busy session she dropped 2.5 seconds, when I helped her push the braking zones and pick lines, in even more dense traffic - but then couldn't replicate these times in later sessions. We've got some work to do to get her confidence back, for sure.

Due to some logistical issues I missed most of the first TT session on Saturday, which is the TT Warm-up. These times don't count for competition but are used to grid cars in the subsequent TT session, then grid is continually adjusted after each session based on the fastest time of the weekend for a given car.

Moving "up the grid" tends to help drivers get clear track, as theoretically all entrants will be gridded in order of their lap times and thus, nobody impedes anyone else. This does not always work. Let me explain. Let's say you have a guy in a TTE Miata that has maxed out the P-to-W for it's class, is on fresh race tires, and has a really good driver. But ahead of him is say a Porsche Cayman in TTB that is on crap tires, but has a better P-to-W so he can pull away from the TTE Miata on the straights. What happens here? The TTE Miata gets blocked in the turns but doesn't have the beans underhood to pass the Cayman on the straights - especially if the TTB Porsche driver has an ego and won't let the quicker TTE Miata by. This happened continually to the me (and others) when I was driving the E46 all weekend... 40 cars in TT made for some serious traffic.



Honestly this is the first time I've ever competed in a Time Trial car that was this slow. The only slower track car I've ever built was the E30 318is above, but it was fully 1000 pounds lighter. I've almost always run in cars that were in the top 20% of the grid, and in something with horsepower or that was more fully prepped for the class - all of which makes it easier to get clear track. Having the 330 with only a 18:1 P-to-W was frustrating as HELL when stuck behind cars with much more power but that crawled through turns. I made a couple of late (but still safe) passes under braking to get by some guys, but it shouldn't be this way. Again, I just haven't experienced this as much in the past - it is a real challenge to get a good lap in a slow car.


Staggering amount of bodyroll with the PSS kit and spring rates doubled. We need bigger sway bars + a lot more spring rate!

As you can see we still have a LOT of roll in corners, and there was a good bit of dive under braking andheave during the transition from braking-to-turning. This was after nearly doubling the spring rates from the PSS kit. No doubt about it, this car needs a lot more spring rate to deal with the grip generated by these 245 Hoosier R7s.

Having since driven the car on the street with the upgraded 350F/450R springs we installed, however, the ride quality on the street has suffered considerably with these springs on the non-adjustable PSS Bilsteins. So much so that I don't think we will sell these shocks with upgraded springs - the rebound is just way too low to deal with bumps on these mildly stiffer springs. They worked fine on track, however, and soaked up the many bumps from MSR-Houston's track surface admirably.


Left: 350F/450R springs and stock bars on E46. Right: Proper springs/shocks/bars on E46 M3 in the same corner

If I had an unlimited budget I'd test this same PSS shock setup with bigger bars, then swap in the PSS10 adjustables to see if the ride improved with these springs. Then we could try them with more spring rates to see if we can get this pig to corner flatter on this tire. THEN move up to MCS TT2 dampers. But like most of you, I very much have a limited budget so we're not necessarily going to be able to go through all of those iterative test steps.



Other issues with the 330 were minor. The rear fenders had a bit more rubbing (you can hear it in the in-car video below), especially the left rear on this predominantly right hand turn course. I still need to spend some time in the shop with a fender roller, a hammer and some dollies to get those cleaned up a hair more. The front left fender also had some contact with the tire, which smashed the squared off inner lip a bit, then pulled it down. One more smack could have smashed the fender beyond repair - luckily I saw this, and between sessions I pulled a wheel off and hammered that lip flat in one section. Again, doing this work track side is the wrong way to do this, but I was pushing the car harder than it had been pushed before, and that revealed the additional rub spots.



Lap times weren't stellar, but we did have a good TTD battle on day 1. There was only one other TTD entrant, the Scion FR-S shown above. He was on BFG R-1 race tires and I'm not sure what else he had modified on the car. After Amy drove the first 2 sessions Saturday she was not getting it done, so I hopped in in session 3 and dropped the times for our Team entry on this car to a 1:52.074. I was gridded behind our class competitor Vinnie in that session, but after a few laps I got around him and he followed me for a lap - where he nearly match my time with a 1:52.085. So we were ahead going into the final Saturday TT session but separated by only .011 seconds!



Since the Corvette was a hot mess and I was done for the day in that car, Amy opted to let me run the final TT session in the 330, which is shown in the video below. Vinnie ran his best time of the day at a 1:51.889 but I managed to get ONE clear lap in that session and dropped to a 1:50.677. That wasn't enough for a lap record but it was enough for the win and we took it.



Cheap Cameras Suck - Quick note about the quality of this video. We have a good Sony vidcam we've used for all of our track videos over the past 4 years. 1080P, Carl Zeiss lens, SD card recording, and it was ~$400 new. Well we haven't brought 2 cars to events often but we would be now, so I looked for a cheap second video camera. And being that our budget was tight in January I only had so much to spend. I'm not a fan of GoPro for a list of reasons, mostly due to the fact that we were a dealer of theirs early on and had to eat 2 cameras that failed out of box. So I got a 1080P knock-off of the GoPro that looked identical for $53, which had hundreds of good reviews on Amazon. What a piece of JUNK this thing was! The video clips stop every 2-1/2 minutes (so I had to stitch each session together from 6-8 parts), the video was pretty poor, and the sound quality was complete crap. "You get what you pay for" still exists.

The lap in the above video was far from ideal, with driving mistakes and multiple car issues I was driving around. I even had to pass a car during that lap - but this was still the least traffic filled lap of the weekend for me. Again, we had 40 TT entrants spread out over 2.38 miles of track. You can hear the rear tires rubbing in big corners and the car sort of heels over exiting the carousel on my best lap there. This is because with too much cornering force (spikes of 1.5g) the car leans over hard and the rear tire grabs the inside of the rear fenders, which will sort of catches and slings the back end around. So I was trying to go fast but not TOO fast, to avoid this known issue. This was FAR from an ideal setup and we should have spent some time on the lift the week before rolling fenders - but we got busy and couldn't turn away paying customer work.



Luckily that janky lap was good enough for a 1.2 second win for TTD. We stuck around for the Saturday night NASA party (with good food and Shiner beer!) and gladly took the first place trophy. Not enough cars in class to win any Hoosiers, but these used R7 tires looked like they could last another 3-4 weekends at this rate, if we can get the bodyroll under control. I was noting some outside shoulder wear so we will swap these tires inside-out before the next race weekend, and we still have a sticker set in this size/compound back at the shop (from winnings in the C4).



Sunday morning was another cold one and there was now some heavy fog to deal with. We ran pretty early and I had to dry the insides of the windshield and rear hatch on the Corvette (no heater sucks), but Amy's 330 has a functional defroster so she was good to go. I ran the Corvette for one session, which was the scariest TT session I've ever driven (25 year old stock shocks + 345 A6 tires don't mix!) where I dropped to an abysmal 1:46.9 in TT2 but Amy was still slow in the 330. I rode right seat with her in an HPDE 3/4 session and coached her for a few laps, where she dropped 2.5 seconds. Mostly just pushing her braking zones, getting on the throttle sooner, things like that. She didn't race much last year and just needs more seat time in this new car before she's back to her usual times (she can and has beaten me before).


With the same minimal safety requirements as HPDE, there are stark differences in safety gear used in TT cars

During my only TT session in the C4 for the day, during my fastest lap of the weekend, I came upon a car that had just crashed into the pit wall pretty hard and had to back out and pull off line to avoid the carnage - it happened only seconds before I came around the final "carousel" corner, and there weren't any flags at the preceding station yet. Somehow the driver was unhurt in this car with just stock seats, stock belts, and nothing other than a helmet.

I could go on and on about how many TT drivers' lack of safety gear and these folks need to set their own safety standards. Who am I to talk? I've run TT in a helmet, T-shirt, shorts, and stock seat belts too many times in the past. I'm trying to do better in my own car (Corvette) but this was a wake-up call to Amy and she wants to move forward with a roll cage, a HANS device of her own, and proper 6-point belts in the 330. See more of my musings at the end of this post about this.



The NASA officials won't like me posting these pictures, but it doesn't help the sport if we bury our heads in the sand and ignore incidents that we can all learn from. There was also some car-to-car contact in another TT session, which I captured on video (I'm not sharing that video). This stuff shouldn't ever be happening in Time Trial, and its very rare in our region, but I feel that the guilty party was handled properly and I'm going to let it go. Still, it all adds up, and we will definitely be upgrading the safety gear in the red 330.



Amy was off the pace so I jumped in during TT session 2 and clocked a 1:51.350 to Vinnie's 1:51.686, all of us fighting heavy traffic. TT session 3 got so held up I was slower, with a 1:51.494 to Vinnie's 1:51.568. It was getting late in the day and the temps were dropping, but neither of us had traffic free laps yet. Vinnie was 3 tenths faster than his Saturday times but I was 8 tenths off my pace from the day before.

We started packing up for the long drive back to Dallas and I let Amy drive in the last TT session while I was loading up the Corvette in the trailer. Many other TT drivers left early and only 14 of the 40 registered TT drives showed up to grid. Sure enough, Vinnie found some traffic free laps and dropped lots of time, to his personal best here at his home track of 1:50.437. That was good enough for the win for Sunday and we congratulated him on that in the paddock, then swapped tires on the 330 and hit the road.


Left: A long reach/short throw shifter would be nice in our E46. Right: Life priorities look right to me!

During the 4.5 hour drive back to Dallas the power steering quit working on the 330, which Amy showed me at a fuel stop. There was no fluid leaking so I assumed it was an internal power steering pump failure (it was) and she managed to get home and drive it to work several days the following week without power steering. It was not an issue until you dip below about 5 mph, then you have to CRANK on the steering wheel at parking lot speeds.


Left: On Saturday the C4 was 6th in TT2, 330 was 1st in TTD. Right: On Sunday the C4 was again 6th in TT2, 330 was 2nd in TTD

This race weekend was a mixed success. The newly upclassed TT2 Corvette was way off the pace, as the OEM Delco-Bilstein dampers could not deal with the bumps of MSR-Houston, but at least it was reliable and the engine never skipped a beat. The 330 was also a bit off the pace of the TTD track record (1:48.4), but we kind of knew it would be slow with the limited mods we've done so far. With the scales showing +150 pounds over class minimum and about -50hp down on the class P-to-W limit, we have a ways to go to get it on par with more modern TTD entries like the FT86.



We learned a lot at this event and still had a LOT of fun - seeing friends, the Saturday night party, and both of us getting plenty of seat time in the 330. This car was pretty dead nuts reliable, other than the power steering failure on the way home.

continued below

Last edited by Fair; 02-11-2016 at 03:09 PM.
Fair is offline   Reply With Quote
Old 02-11-2016, 03:05 PM   #32
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
continued from above

POST NASA REPAIRS

Not much to show here. The power steering pump was ordered Monday morning after the event, but I was being cheap and we ordered the least expensive of 5 options we found for this M54 engine. And as you can see below, the impeller sheered off the driven shaft inside the old pump. The shaft just slid right out, and only the pulley and belt was keeping it from puking out the front.



After the new "Cardone" brand power steering pump was installed, the new reservoir filled, and the pulley was being bolted on... POP! The cast flange on the pump snapped off as it was being tightened to "finger tight" levels. Junk cheap overseas casting! It was temporarily bolted up with 2 of the 3 pulley bolts, just so it could be driven in and out of the shop until the replacement pump arrived.



For the replacement's replacement power steering pump I chose to get a name brand that I trusted (AC Delco) - which is what we would always do on customer's car. We will install that later this week, when we have a gap in the shop schedule.



Being a cheap ass doesn't pay, which is something I learn over and over again on my own purchases. This low end power steering pump + the cheesy $53 GoPro knock-off video camera (which was complete junk) are just two of my latest re-learned examples of this lesson.

The 325Ci was finally inspected and tagged so it is being cleaned up for sale soon. I'll post the Craigslist link in my next post, hopefully.

SAFETY FIRST - FINALLY?

As I've said since the beginning of this project, this E46 is a "street driven track car". This is a huge compromise, but it is what so many people and customers want to do, so we're sticking with this philosophy on this E46 - to see how far we can go with that. Seeing that crashed TT car above, however, made Amy and I both want to ratchet up the schedule for safety upgrades with this car. We currently have a single fixed back Cobra racing seat with a 3-point OEM seat belt - and nothing else. That's just not safe enough.

Several safety upgrades are planned before Amy takes this car back on track again with these Hoosier grip levels. After tracing my injuries in a 2014 crash to not wearing a HANS, I started wearing one and I want Amy wearing a HANS on track, too. To make a head and neck restraint work you need a real racing seat, real 5/6/7 point harnesses, and something to anchor the shoulder straps to (harness bar, roll bar or roll cage). With as janky as the setup was at MSR-H, I know that even lower powered cars like this TTD BMW can still roll over or smack a wall. Driver fatigue from hanging on without using a real race harness also takes its toll, even with a racing seat. A bolt-in harness bar is just not good enough option for even the Time Trial racing we are doing, so its time to talk roll bar vs roll cage.



Another 4-point roll bar (like we used in the blue 330), a pair of proper FIA racing seats, good 6-point FIA harnesses, and a HANs device probably make the most sense for a dual-purpose car. That gives some decent rollover protection, a good place to anchor the shoulder harnesses, and keeps tubes away from the driver's head in the front seat area for street use. The E46 above (customer's car) has a 4-point roll bar and racing seat.


An improperly specified/built roll bar does virtually nothing for safety in a rollover

But again, after seeing the carnage at MSR-Houston, we're both rethinking things a bit. The problem with a 4-point roll bar, especially pre-built kits we can find, is that the upper tubes don't fit as close to the chassis as a custom built unit. They are often 1-2" away from the headliner, which is itself 1-2" below the actual roof skin. This can pose a risk during a rollover to taller drivers, like me. See how far my helmet is above the top of the roll bar in the Miata above?? That's almost worthless. A bolt-in roll bar kit usually fits like that for tall folks. Not good.

I also want to set a better example for proper track safety than I have in the past.



For some racers a full NASA spec, W2W legal roll cage might seem like the only answer. We do a lot of custom roll cage fabrication work here at Vorshlag, so it might also seem logical for this car. That is definitely the way to go on a dedicated race car, but that's not what the car is, remember? Its a combination street/track car. IT will always have working side windows, air conditioning, and be fully street legal.

I'm normally not a fan of using full 6/8 point roll cages in street driven cars. A roll cage almost always puts a steel tube closer to your head than a normal street car's interior would be. Even with SFI style padding, your head is going to be closer to something very hard and unforgiving without a helmet to protect your noggin. So a 6/8 point fully caged street car is often less safe when driving on the street than with just a 4-point roll cage. It just depends on the size of the car and also the size of the driver.



There are other considerations to consider. In NASA TTD, this 330 is overweight by 150 pounds, and a 4-point roll bar or 6/8 point cage is going to add 60-100 pounds. Not that I'd use weight as a reason to not add a roll bar or cage, but we need to address this added weight elsewhere. The back seat becomes 100% useless with even a 4-point bar, and we only kept the back seat installed in the blue 2001 330 (shown above) because class SCCA rules required it. NASA TT doesn't care, so since we need to shed some pounds already Amy has agreed to let us take the rear seats out (one of the back seats doesn't latch right and flops down during track session anyway).


We built this Miata's cage with limited street use in mind. The custom door panels still allow for door window use. Hardtop fits snugly

The headliner in this 330 is also a mess, and made at a lower height to accommodate the sunroof. We have a sunroof delete panel going in this car so we will likely just leave the headliner out, which gives us even more room to add a taller custom roll bar or cage. Then it was the A-pillar, B-pillar and C-pillar interior panels - which are also beyond saving in this red 330, so those car coming out...


We won't use removable door bars, but the diagonal routing of the door bar in the caged drag race car above can work

Somehow we have rationalized our way towards a full 6-point roll cage for this car?? Since Amy is this car's primary occupant for street driving, and she sits considerably lower than I do, it can work safely for street use if we build the cage properly. This means leaving some of these ugly interior panels out and pushing the cage all the way to the roof skin. We'll have to compromise a bit on the door bars, to keep the roll up/down windows, but we will show this during the cage construction in a future update. A fire bottle on a quick release mount will also be added, but don't expect to see center or window nets - this is not that kind of build.

WHAT'S NEXT?

This update has run long so I'm not going to bore you further with too many long term plans, as they keep changing. Our racing budget for this year has tightened up a bit so Amy and I might both be running the 330 for a while. The Corvette needs major suspension upgrades to deal with the mega-sized tires and those might have to wait a month or three.



We just finished up a test with a PSS10 kit for a Porsche 996, shown above. The spring rates for this Bilstein kit were 2.8 times stiffer than stock, so that was encouraging. That means we might try the PSS10 kit for this E46 before jumping to MCS coilovers, but it is still a gamble. If not, we will probably try even more spring rate on the existing Bilstein PSS coilovers, knowing the ride comfort will suffer further. I'm also working on getting some swaybars for this build, which are in the new build plan points now that we've ditched the splitter and wing ideas (not enough points with the 2016 classing change). And I will personally roll the fenders more at both ends when we do the spring rate change - these 245s need MOAR ROOM.

I had assumed the lack of a Limited Slip Diff would have been more of a burden than it was, so that can wait for a bit. Probably notice this more in autocross use - which we will try to do in March with Texas Region SCCA, just for fun. There is a gaggle of Mishimoto parts ready to be installed, which includes every single part they make for the E46 330 - radiator, thermostat, fan/shroud, aluminum reservoir, radiator hoses, cold air intake, and more. We will install a new water pump and thermostat housing with all of this in the near future. Luckily both January track events included cold weather, as we ran this 330 pretty hard, often with 2 drivers. At MSR-Houston we put 6+ sessions a day on the E46 with no cooling issues.


I'd like to see some real gauges in the 330 - water temp, oil pressure and oil temp - along with the oil pan baffle and upgraded oil pump drive that VAC sells. That's got to happen soon, along with a fresh harmonic damper on the front of the engine. That's the short term critical list, for now. Thanks for reading and we will be back with another update in the coming weeks.

Cheers,
__________________
Fair is offline   Reply With Quote
Old 02-11-2016, 08:16 PM   #33
Logan175
Registered User
 
Join Date: Mar 2012
Location: Winnipeg,MB
Posts: 53
My Ride: E46 320i
This build continues to be awesome.

I am excited to see what compromise you come up with for the roll cage/harness bar on a street duty car.

I am a big guy and want to run a recaro profi XL and harness, but between regulations and maxing safety it's a challenge.

Would you do a door bar that follows the bottom of the door?
Logan175 is offline   Reply With Quote
Old 04-05-2016, 03:13 PM   #34
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
Project Update for April 5th, 2016: It has been 6 weeks since my last update and our "Daily Driven Track Car" BMW has logged more wins at a NASA track weekend. We have massively upgraded the brakes, tweaked a few small things, and have some new dampers heading our way. Read below to find out more.

SERIOUS FENDER ROLLING

Its no secret that we had a good bit of tire rub at the first two track events in this BMW 330. Admittedly we're running a very wide wheel and tire combination for a non-M E46. The E46 M3 can easily swallow 285mm front and 315 mm rear tires but this non-M is pretty much limited to a 255mm tire, without fender mods. And while it seems that fitting a 245mm should be easy, this 245/40/17 Hoosier has 10.3" of section width and we're stretching it out on a 17x10" wheel.



In previous posts I showed where we had used a fender roller on this car at our first event on this red 330Ci, yet still had significant tire rub at the next. I also showed some pics of the more substantial fender mods we had to do to fit an 18x10" wheel and 265/35/18 tire to our blue 300Ci, above. I finally found some time at the shop on a weekend to use the same "heavy handed" clearance methods on the red car.



Let me preface this with a warning: I don't recommend these methods if you care about your paint. Our red E46 here has some hail dings and other minor paint issues, so it will likely get some paint rework over the summer from our friends at Heritage Collision (who does all of our paint and body work). That said, it was Hammer Time on our little 330!



At left you can see the array of hammers and dollies I used to smash the inner fender lips flat + persuade the contours out a bit. These have been trapped in my tool box inside a stuck drawer for months. My tool box has been used and abused by everyone in my shop for a decade and several drawers have been overloaded to the point that a few slides got stuck. My big hammers were buried in one of these stuck drawers, so after removing the tools inside and the drawer above, I had access to the hidden treasure! What a mess. I've finally purchased new slides, just need the time to unload my ENTIRE box and install them.



The front fender mods were relatively easy. These fronts are single wall, thin gauge, stamped steel fenders that have a 90° inner lip on the wheel arch. This was what I slowly hammered/rolled flat to vertical so that it could no longer "catch" and/or cut a tire. The flattest bodywork dolly I had was wrapped in a towel and used to support the outer fender contours (towel keeps it from scratching the paint). Once the inner lip was flat and flush with the outside edge, I slowly massaged the entire arch contour outboard a bit beyond vertical, for some extra room. This is a BIG 245 tire here...



The rear fenders take considerably more work to maximize inboard tire room. Not only does the lip need to be hammered flat but the contour of the outer fender needs to move outboard about an inch. The rear fender is part of the unibody, and its made up of 3 layers of sheet metal, so it takes a LOT of hammering. Wore my arms out, and my ears. Protecting the paint is not an option back there, and the final result isn't all that smooth, but it is functional and should clear this tire now at full bump. My painter always fixes my sins.



And while this looks a bit much with the stock 17x7.5" fronts mounted and nearly 3° of camber (top left), with the 17x10" and wide-ass 245 (top right) its still pretty tight. I was going to be testing it for rub at the next event, both front and rear, and hopefully not cutting the sidewalls anymore. If we could just get rid of some lean...

BIG BRAKE UPGRADE

Another big change before our March NASA event was upgrading the front brakes. This might seem like a long story to get to the tech write-up for this brake upgrade, but please bear with me. This install was the conclusion of a multi-year search for a Big Brake Supplier for us, and I'm glad we tested this new brand on our red 330.



We have been on the hunt for a "big brake" supplier to work with for several years, so let me explain how we got here. We supply brake components to a lot of folks - brake pads, rotors, hubs, stainless brake lines, brake cooling backing plates and inlet ducts, brake fluid, even some modest brake caliper upgrade kits - but we only supply what we have tested on our own cars, vetted at the track, and sometimes things we have built in-house. We won't just "sell everything" probably to the determent of our bottom line, but I'd rather sell things I know and trust.

Picking a brake pad company took us about 3 years of testing all manner of brands and compounds on several of our own cars. Once we had found what we felt was the supplier who had the quality, performance, and cost-per-lap pads we reached out to them to become a dealer. Carbotech was what we have been selling for many years now, and we have great relationships with the key people there - and have worked with them to develop new car model offerings on many occasions (sending them OEM samples, scans, or 3D drawings of pads).



For reasons I won't get into, the head technical folks left CT and started G-LOC Brakes about 2 months ago, with equivalent compounds and major component suppliers, so we followed the brains behind Carbotech to this new company - because we trust people more than a name. I talk a bit about that in this blog post.



That's important in our search for a Big Brake supplier, so hang in there. We have looked at and installed all of the major BBK brands - AP, StopTech, Alcon, Brembo, Wilwood, etc - and everything we have seen so far had some shortcoming for us. Some brands have gotten too big and branched out to far too many models to care about small shops like us (trucks, SUVs, everything). Others seem to focus on things like caliper colors and going to the most "GIANT" rotor diameters, often ignoring sound engineering. Not everyone wants or needs to run 18-19" wheels, you know?

Some were pricey and hard to get. Brembo only wants to deal with Professional Race Teams and wouldn't give us the time of day each time we reached out on the phone or at industry shows. Wilwood has a lot of low end calipers - they are the cheapest for a reason, and you get what you pay for with their products. AP makes some great stuff (see above) and we like the folks at Essex (their U.S. importer) but we are limited to the handful of cars Essex develops, and they won't sell us components like calipers separately - which we want to use to make NEW kits they don't want to bother with. So the search continued.



My engineer Jason and I went to the 2015 PRI show in Indy last December (an industry show much more focused on racing than SEMA). We are always "interviewing" potential new suppliers. This the third year we were specifically looking for a brake supplier we could work with. We looked at EVERYTHING having to do with brakes at this show - the big names, the no name far east imports (nope!), and the new companies.

On the last day of the show we ran into Danny Puskar, who we knew from Carbotech (one of the guys we trust, now at G-LOC). His booth was right next to the Powerbrake booth, which is a competition brake supplier based out of South Africa. Danny - someone we trust implicitly about brakes - introduced us to the Powerbrake guys at this show and highly recommended we give their products a closer look.

After about an hour of discussion with their engineers and looking at their product examples at the show, we didn't get fed any B.S. (a rarity!) and we were impressed with the technology and quality they were bringing to the aftermarket caliper/rotor world. They have been operating in South Africa for a while now and have a lot of European race series and Dakar wins, but this was their very first show in USA, after setting up a North American office in North Carolina earlier in 2015.



Not only did we appreciate the quality, design and engineering they had in their parts - the South African currency is relatively weak compared to the USD, so their prices were exceptionally good. This was one of those rare "you get more than you pay for" situations. They have their rotor rings cast in Italy and machine all of their 2-piece rotors, calipers and brackets in-house in SA on HAAS CNC machines - the quality is there.



As an engineer and manufacturer myself I can appreciate the little things they do on their machined parts - the hardened coatings and electroplating finishes they use are more robust than the "pretty colors" many other brake manufacturers flock to. The wear surfaces on the calipers that the pads slide over are hardened steel, there are anti-knock back springs in the piston bores, no rubber "dust seals" to burn up like OEM calipers, and they always put temp strips on the calipers and thermal paint on the rotor rings.

So we finally ordered our first Powerbrake kit in February to test on our E46, hoping it was worth the "class points" and costs - We would find out at the next NASA race. It wasn't like the OEM 330 brakes were terrible. When fitted with competition pads and Motul RBF600 fluid they seemed pretty good so far. We were originally just going to add brake cooling to those and leave it at that, but with the big class points change in January (we lost 7 points) and our subsequent loss of aero mods (splitter and wing were chucked) we suddenly had a few points to spare. And one of the "missions" of this project was to test and develop new products.



We won't offer something we haven't tested personally, so this E46 would be our first test bed for the Powerbrake kit. On their recommendation we ordered their front Powerbrake PBL44L X-line 4 piston caliper Big Brake Kit for BMW E46 non-M models. It was built around their 340mm x 34mm (2-piece) rotor, which theoretically should fit inside our 17" Forgestar F14 wheels and hopefully the stock 17" wheels.



Our shop manager Brad installed this entire front brake kit in 2.4 hours, all while taking these pictures during the install. He only had to trim a corner off of the OEM brake dust shield to clear the massive caliper. Great instructions, included all of the brake lines and hardware, the brackets and calipers bolted on perfectly, and the rotors fit great.



The difference in the caliper sizes was enormous! Strangely enough, the massive aluminum 4-piston / 4 pad calipers were lighter than the tiny OEM steel single piston units + sliding bracket. The stock 1-piston sliding caliper / bracket / pads weighed in at 14.50 lbs each and the Powerbrake 4-piston caliper (9.80 lbs) with pads and mounting bracket (0.78 lbs), which was a savings of 3.92 pounds per corner.



The rotors were vastly different in size as well. We talked about the 325 vs 330 rotors back in an earlier post (when we upgraded to 330 front brakes on the original #JackDaniels) but the change to this 340x32mm rotor was even more drastic. The THICKNESS was massive, and even with an aluminum hat they are 21.86 lbs for this 340mm (13.4") diameter rotor assembly. Compare that to the steel 1-piece 330 rotor, which measures in at 325mm (12.8") diameter (and 25mm thick) and 19.84 pounds, for a gain of 2.02 pounds per corner. If my math is right that means we still lose 1.9 pounds per corner with this MASSIVE upgrade in rotor and caliper components.

Other BBK companies want to move folks to ever larger diameter rotors to get the added heat capacity and rotor cooling. 355mm and 380mm rotors with 6- or even 8-piston calipers are becoming the norm. Powerbrake knows that with more diameter comes more rotational mass, so they will often offer some of their BBKs with slightly smaller diameter rotors, but with thicker rotor rings. This gives the thermal mass needed for track abuse, but at a lower hit to rotational inertia. And they use more 4-piston kits than 6-. When the heat gets too bad for a even their 6-piston (rare) they use a water cooled jacket in their calipers - for events like the Dakar rally. So their engineering is a little more thought out than most, which I like. They also don't offer Bling Daddy powder coating colors for their calipers - just hard anodize grey. No frou frou up in here.



continued below
Fair is offline   Reply With Quote
Old 04-05-2016, 03:18 PM   #35
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
continued from above

Going from a sliding caliper to a fixed caliper should make for better brake feel and less chance for pad knock-back, and the massive caliper size should make for much more heat resistance. There is more brake torque, more pad area, better rotor cooling, and a lot more thermal mass to this front brake system compared to the stock 330 bits. No more holding back on the brakes for me - I'm a Left Foot Braker that tends to abuse pads and rotors, so the next event was going to be a good test.



Of course the Forgestar F14 17x10" wheels cleared by a mile (above left), which we tested long before installing this kit. At the last minute before this NASA event we went to go mount the stock wheels and street tires back on... and the 5-spoke 17" 330 wheels didn't fit! It was close but no cigar. Then we tried the hideous Foose 18" wheels and the oddly placed valve stem hit the caliper. WTF? Last we tried the 17x8" wheels off our 328i Sedan, which have been the daily wheels and tires on the 325Ci (JackDaniels) for months. And they fit! (above right) Whew...

NASA AT MSR-CRESSON (1.7 CCW) MARCH 12-13, 2016

It rained the entire week before this March NASA race, and we had stiffer springs on hand to replace the 350F/450R Hypercos we had already upgraded to. It came down to the final hours on Friday when the weather looked like it was not going to let up before we made the call to leave the springs alone. Softer springs make a car easier to drive in the wet, so we punted on that upgrade.

Amy couldn't drive this weekend, as she was going to be out of town for a family emergency. I mentioned to my crew here that I needed someone to fill in for her when our Order Desk Manager Jon started talking a bit of smack, so I surprised him with an offer to drive the red BMW in HPDE, and he took it!

We did some last minute prep on the 330 and he drove it out to Motorsport Ranch Cresson on Saturday morning. I left the shop at 7:20 pm on Friday night with the TTC classed C4 Corvette in our trailer and slogged through the rain to get to the track. I was unhooking at 9 pm, in the pitch dark, parked in the grass, on a steep hill. There was NOWHERE on pavement to park, as even with the rain looming, over 200 people showed up to run HPDE, TT, and W2W.



Saturday morning it was still wet and sprinkling, so I drove the BMW in the first TT "Warm Up" session on the 245mm Dunlop Star Spec II street tires, with Jon riding shotgun. I had hoped to show him "the line" (this was his first time driving at MSR-C), but anywhere on the 16+ year old, original track surface that was "the line" was polished smooth. Add in the water and it was like driving on ice, so the trick in the rain here is to NOT drive anywhere near the proper driving line. The marbles is where the grip is, strangely enough.



Event Photo Gallery: https://vorshlag.smugmug.com/Racing-...-MSR-C-031216/

After that drift-fest TT warm-up we came in - and realized we forgot to install the AMB transponder on the BMW. No official time, doh! So that meant that I would be gridding in the next TT session at the back, no matter which car I brought to grid. I ran the red 330 again and got a time that looked like it would be good enough for the win for the day (4.5 seconds ahead).



Due to some confusion at registration it was showing Jon as the TTD driver in the 330, but he ran in HPDE3/4. They fixed it in the final official results for Saturday. Anyway, since the TTD class margin looked safe I handed the BMW over to Jon to drive the rest of the day and hopped into my TTC Corvette (I registered and entered 2 TT cars for Team Vorshlag at this event, just like in January).

The TTD class only had 2 entrants (3 dropped out late in the week - probably due to the threat of rain) so there was no chance to win Hoosiers in the BMW. We had 6 cars in TTC (we need 5 for Hoosier to pay 2 tires to 1st each day), so I concentrated my driving efforts into that car and class to hopefully get some tires Saturday. The C4 was on a sticker set we won last year, but the 330 was running some pretty "tired" Hoosiers and needed a new pair of shoes!

This number of cars in class - and the potential to win tires - would influence how many sessions I drove in the TTD 330 on both days. There are only 4 Time Trial run sessions per day (and the 1st one Saturday doesn't count), and there's not enough time allotted to try to drive 2 cars in one session (nor is that allowed), so I had to ration out the sessions between both cars carefully. Ideally I would drive ~2 sessions in each car, win both classes both days, set both TTC and TTD track records, and win 4 tires in TTC. I already set the TT3 track record here back in 2014, so I was watching the guys in that class, too. As we all know, things rarely go to plan!



You can read more about the results in the TTC Corvette starting here, but I was fairly hopeful that the Corvette could reset the TTC record and take the class win, but that proved to be only half true. While we eventually ran more than 3 seconds quicker than the old TTC record that weekend, the win eluded me on Saturday. Ended up getting P2 by 2 tenths that day. I was fighting some small handling and braking issues in the 25 year old Corvette, and possibly the only thing I needed was more seat time in this all new setup (we had just moved that car down from TT2 to TTC).



After lunch the rain finally let up and began to dry, so we unloaded the Corvette. The track surface dried off in TT session 3 and I took the C4 out for the first time on Saturday. Due to the transponder mistake in the first TT Warm Up session in the 330, I would be starting at the back of the grid in BOTH cars. This meant I was fighting traffic all day in each entry, which didn't help my chances for getting a clear lap in either.



Jon was in HPDE3/4 and as the track dried up we swapped on the Hoosiers (right before the 2nd TT session, where I drove the BMW) and he was having a blast. I saw the TT "needle go into the vein" for Jon this weekend! I fought the Corvette the rest of Saturday and placed 2nd in that car and 1st in the TTD BMW. That netted us 2 etched glass trophies at the Saturday night party and dinner, which was cool, but no contingency tires and no new track records. Sunday was a new day, and a new race, so I'd try again in both cars!

Sunday morning was a bit of a mess and we were a little late to the track. We rushed to the track from the hotel and I made it there just in time to get into the 330, throw some fuel in it, and make it to grid with 1 minute to spare.



I ran the first TT session in the BMW and again was stuck mired in traffic, clawing my way through the middle of the pack. This was probably the worst session of the day for setting times, as it was cold and foggy again, with just a hint of moisture on the track surface on the first lap.

Getting a good lap in an underpowered car is actually pretty difficult. This BMW cannot pass even a TTE classed Miata in anger - they have to lift to let me by, or early brake. Luckily that's where this car SHINED all weekend - this car could outbrake ANYTHING! Jon and I both remarked at how effortless the car would take brake abuse, especially from two autocrossers who were using 10/10ths of the brakes on every turn. The grip was good in the car but the bodyroll was still pretty excessive. At least my fender rolling work was worthwhile - we noted zero tire rubbing issues all weekend, even with the excessive suspension travel allowed by the soft-ish springs and stock swaybars.

Over the weekend we ran the car in back-to-back sessions (TT to HPSE3/4) a total of 3 separate times, with zero time to allow the brakes to cool. I would do my session, come into grid, swap with Jon, and he'd head directly out. That should tax most braking systems, but the Powerbrake bits just laughed at us. Sure, the pads supplied in the kit were noisy and dusty - as all good track pads are - but they never faded once. Not even a little.

This was in direct contrast to the brakes on my Corvette. This car, which was 100 pounds lighter and running the exact same tire, was cooking the brakes in about 4-5 laps. We're chasing 25 year old rem master cylinders in that car, but the pedal NEVER felt as good as it did in the E46. The differences in pedal modulation and feel, braking power and heat resistance between the two cars was DRASTIC.

I have spent so many years in competitive motorsports on OEM based calipers that I was just used to the semi-mushy feel and limited thermal capacity of stock style brakes. Sure, good pads, fluid and brake cooling always help, but there are limits. With the BMW that day, nothing could phase the brakes. At least one thing worked well on that car!

I ran a 1:27.604 in the car Saturday but only managed a 1:27.854 on the first TT session Sunday, which ended up being the only session I ran the 330 that day. I turned the car over to Jon for the rest of the day again and hopped into the Corvette to try to chase down the TTC class leader. Jon put 3 more sessions in the BMW that day and had a lot of fun. I drove right-seat with him in one session Saturday, after the track dried, to show him a few pointers - which he picked up very quickly.



As you can see the BMW still has LOTS of bodyroll but its a tick less than the first event here back in January, where Amy drove it on the PSS springs at SCCA Club Trials. Kind of regret not bringing those other springs, as we had plenty of dry sessions both days to test that. Probably would have been outside the damping range of these non-adjustable PSS shocks, though.



I was so rushed on Sunday in the one session I drove TTD that I was over-driving the BMW a bit, which is all too obvious in the picture above. I put two wheels off on that lap but managed to keep it straight (4 wheels off or a spin DSQ's your TT times for the entire session) and scored a good enough time for the TTD win, or so I hoped. I had much bigger issues in the TTC car, putting 4 off in one session and losing the master cylinder completely in the next. That car went into the trailer with a 1:21.90 lap time, but with only a 2nd place finish, no tires, and no track record.

Since the NASA Texas website was out of date nobody knew what the TTD track record really was. I had thought I had set it the day before, but looking at it more closely a week later I realized the record was missed by a few tenths with my Saturday time. So while I managed to get another 1st in TTD Sunday in that one traffic filled, 2-tires-in-the-dirt session, no track record was set by this car, either. I missed both class track records by about 3 tenths... oh well, you can't buy talent!

continued below

Last edited by Fair; 04-05-2016 at 03:27 PM.
Fair is offline   Reply With Quote
Old 04-05-2016, 03:29 PM   #36
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
continued from above

I've been searching for a second video camera setup to use in the BMW, but the new gear didn't show up in time for this MSR-C race. Jon brought his GoPro to use, but we were both so busy all weekend that we didn't set it up in the 330 until after I had turned the car over to him on Sunday. So no in-car TT video of my dismal laps in the 330 this time, sorry. The new vidcam will be here in time for TWS, where we should hopefully have a little more "motion control" in the suspension.


Sunday TT Session 3 in-car video from the TTC C4

I did make one in-car video from that weekend, in the TTC Corvette, which was considerably faster than our TTD entry. Nothing special here, just showing what this track looks like, one letter class up. With the same driver, the exact same Hoosier 245mm R7 tire and similar weights, and worse brakes, the TTC C4 was nearly 6 seconds a lap quicker than my best TTD lap time. Part of that was me having a little more seat time in the C4, but mostly it came down to SPRING RATE and HORSEPOWER. The C4 is at the class minimum 3260 pounds (it was weighed 12 pounds over in Tech, so 3272) and makes 288 whp (near the class P-to-W limit). The 330 is at 3430 pounds and makes 195 whp (see dyno test below) - which is both 50 whp down and +150 pounds too heavy for TTD class. The C4 also has a massively upgraded 1200# transverse front spring compared to the 350# front coilover springs on the 330.



Obviously we have to address the lack of power, the extra weight, and the low spring rates (and subsequent damper upgrade) needed to make the E46 more competitive in its class. We're into year 2 of prep on the "Budget TTC Corvette", so it has a bit of a head start. We should realistically have been running 1:23s or better in a max effort TTD car, so we have a lot of work left to do to this BMW. We are taking the prep in deliberate, planned stages, so stay tuned for more upgrades as the season progresses and hopefully we can nudge closer to some TTD track records - eventually.



During this NASA weekend I was also instructing, and worked with 4 different HPDE1 students. Sometimes that meant sprinting to the grid to meet them in time for their sessions, after getting out of one of the two TT cars. The grid was way back on the unused 1.3 mile road course, due to the lack of paved parking area on the wet grassy areas. Instructing was fun, but made for a hectic weekend and a lot of running around - I need to get a scooter or small track support vehicle, something to get around the paddock in more quickly. All it takes is money, right?


Official results for Saturday (left) and Sunday (right)

Overall the weekend was a mixed success. Driving two TT cars + instructing + talking to customers at our ever-busy trailer paddock area makes for a hectic weekend, but it was also a lot of fun. Jon got a check ride for TT and should have his comp license the next time he shows up to a NASA event. I managed two 1st place finishes in TTD (with only one timed TT session each day in this very under-prepped car) and two 2nd places in TTC. No new track records set by our cars, but our old TT3 record here (1:17.2) managed to stay untouched - for now.



When Jon and I were switching the street tires back onto the 330, we noted that they still had excellent wear across the tread, even with the massive body roll. At least we seem to have the camber, toe and tire pressures dialed in well. Since we didn't win a new set this weekend, I suspect this 6-weekend old set of R7s will be used once again on the 330 at TWS. The front brakes also looked exceptionally good - with virtually no visible pad or rotor wear - and only the first thermal paint band had "turned". That means the rotor had crossed 527° F but had not reached the next band, which is at 860 °F.



I cannot explain with words how GOOD the brakes felt and performed, but I am now a believer. Glad we took the gamble and tried out this new Powerbrake kit on our car. They also flew in for our annual SCCA Tech day + Open House event (shown above) and their rep talked to 200+ people in our shop that day. After that meet-and-great + our recommendations, we've got a half dozen cars lined up for Powerbrake kits - some of which will be new models we have to measure for them.

After switching the tires on the BMW we moved the trailer out of the grassy swamp and onto pavement, then loaded the Corvette for the trip home. After instructing in the last 5:20 pm HPDE session, I didn't get out of there until after 6 pm, and that 2 hour tow home made for a another 12 hour day. But compared to my normal work days, this was a breeze.

BASELINE DYNO TEST



We've been pretty slammed in our shop since the NASA event, but I found time on the next weekend to go to a Dyno Day at True Street Motorsports, who tunes all of the LSx and Coyote 5.0 powered cars we build at our shop. They dyno'd JackDaniels earlier this year, shown above.



This time I took "Fireball", the red 330, and was first in line for their Dyno Day (they did something like 60 cars that day). We set the bar pretty low that day with our baseline stock dyno pull on this 164K mile 330, but we at least had something to go by for this build!



Sure enough, the car made about what I guessed it would on their DynoJet chassis dyno: 195 whp and 200 wtq. Not bad for a bone stock, 16 year old, 164K mile car rated at 225 hp at the crank. As I wrote last time, running at the class minimum weight of 3285 pounds, and with the +0.8 P-to-W "bonus" for running a 245mm tire, we can make up to 244.2 whp in TTD class. Now the real question is... how do we gain 50 whp without burning too many "class points"??


Baseline Dyno Video above

The underwhelming video above shows parts of the two back-to-back pulls they made on our red BMW. It was done in top gear, revved to 6000 rpm redline, and had a fan blowing over the radiator the whole time. They know how to do NASA certified dyno pulls as they've done them on a half dozen different cars for us. I just wish they had the ability to custom tune the BMW computer.

WHAT'S NEXT?

I need to wrap this up so let's see what's next. I ordered MCS TT2 internal double monotube coilovers earlier this week so we can finally get those installed with some REAL spring rates before our next event, which is...

Next few NASA Texas events:
  • April 22-24 – Texas World Speedway
  • May 21-22 NOLA Motorsports Park – Crossover with NOLA
  • June 11-12 – Hallett Motor Racing Circuit

Of course this is the fourth or fifth "last ever" event at TWS, but I don't have much faith in those claims. We'll hopefully have a better sorted suspension to go along with the brakes and tires - both of which worked damned well. We'll still be down on power but we will address that later in the summer. One of the two Whiteline swaybars is en route to us (the rear, ugh) so we'll have to figure out something for the front.

We have TWO more E46 chassis we are going to be building soon, one of them with the PSS suspension coming off of this car. I'll show those builds as they happen in future updates. That's enough for this time. Thanks for reading!

Cheers,
__________________

Last edited by Fair; 04-05-2016 at 03:41 PM.
Fair is offline   Reply With Quote
Old 04-05-2016, 03:42 PM   #37
Fair
Registered User
 
Join Date: Jul 2007
Location: Dallas, TX
Posts: 85
My Ride: Various BMWs
Quote:
Originally Posted by Logan175 View Post
This build continues to be awesome.

I am excited to see what compromise you come up with for the roll cage/harness bar on a street duty car.

I am a big guy and want to run a recaro profi XL and harness, but between regulations and maxing safety it's a challenge.

Would you do a door bar that follows the bottom of the door?
We have something mapped out, and it will follow the bottom contour of the pull handle, I think. More on that soon...
__________________
Fair is offline   Reply With Quote
Old 04-05-2016, 05:45 PM   #38
sillieidiot
Registered User
 
Join Date: Sep 2004
Location: the OC
Posts: 32,484
My Ride: '06 AW 330ci
Send a message via AIM to sillieidiot
Love the progress. It was definitely a good read.
__________________
I like to reply to threads with 0 posts




Have a lighting problem? Read this first:
Lighting-related Troubleshooting Guide
sillieidiot is offline   Reply With Quote
Old 05-01-2016, 12:17 PM   #39
norcalmike
Registered User
 
Join Date: Dec 2012
Location: Santa Cruz CA
Posts: 35
My Ride: 2001 330Ci
I love following your 330ci builds. It's been a great guide for my own 330ci build. Thanks!
norcalmike is offline   Reply With Quote
Old 08-22-2016, 02:42 PM   #40
chrisjames654
Registered User
 
Join Date: Dec 2014
Location: Atlanta
Posts: 17
My Ride: 02 330i
Waiting on an update to one of my favorite build threads. Any news on new suspension setup?
chrisjames654 is offline   Reply With Quote
Reply

Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Censor is ON





All times are GMT -5. The time now is 01:32 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2017, vBulletin Solutions, Inc.
(c) 1999 - 2016 performanceIX Inc - privacy policy - terms of use